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CHAPTER 18

Worked Examples (Part 2)

Introduction
Worked example for continuous data (Part 2)
Worked example for binary data (Part 2)
Worked example for correlational data (Part 2)

INTRODUCTION

In Chapter 14 we presented worked examples for computing a summary effect using
continuous, binary, and correlational data. Here, we continue with the same three data
sets and show how to compute the measures of heterogeneity discussed in Chapters 16
and 17.

These computations are also included in Excel spreadsheets that can be downloaded
from the book’s website

WORKED EXAMPLE FOR CONTINUOUS DATA (PART 2)

On page 81 we showed how to compute the effect size and variance for each study.
Here, we proceed from that point.

Using results in Table 18.1, the summary effect is given by

M = 101.171
244.215

= 0.4143,

which value is used in the column labeled Mean in Table 18.2.
Then, using (16.1) we sum the values in the final column of Table 18.2,

Q =
k∑

i=1

Wi(Yi − M)2 = 12.0033.

Or, using (12.3) and results in Table18.1,

Q = 53.915 − (101.171)2

244.215
= 12.0033.
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Table 18.1 Dataset 1 – Part D (intermediate computations).

Study Effect Variance Weight Calculated quantities

Y VY W WY WY2 W2 W3

Carroll 0.095 0.033 30.352 2.869 0.271 921.21 27960.25
Grant 0.277 0.031 32.568 9.033 2.505 1060.68 34544.41
Peck 0.367 0.050 20.048 7.349 2.694 401.93 8058.00
Donat 0.664 0.011 95.111 63.190 41.983 9046.01 860371.10
Stewart 0.462 0.043 23.439 10.824 4.999 549.37 12876.47
Young 0.185 0.023 42.698 7.906 1.464 1823.12 77843.29

Sum 244.215 101.171 53.915 13802.33 1021653.52

Table 18.2 Dataset 1 – Part E (variance computations).

Study Effect Variance Weight Mean Calculated quantities

Y VY W M (Y – M)2 W(Y – M)2

Carroll 0.095 0.033 30.352 0.414 0.102 3.103
Grant 0.277 0.031 32.568 0.414 0.019 0.610
Peck 0.367 0.050 20.048 0.414 0.002 0.046
Donat 0.664 0.011 95.111 0.414 0.063 5.950
Stewart 0.462 0.043 23.439 0.414 0.002 0.053
Young 0.185 0.023 42.698 0.414 0.052 2.241

Sum 12.003

Under the assumption that all studies share a common effect, the expected value of Q
is given by

df = 6 − 1 = 5

where k is the number of studies. The difference,

12.003 − 5 = 7.0033,

is the excess value which we attribute to differences in the true effect sizes.
The p-value for Q = 12.003 with df = 5, is 0.035. In Excel, the function

=CHIDIST(12.003,5) returns 0.035. If we are using 0.10 or 0.05 as the criterion for
statistical significance, we would reject the null hypothesis that all the studies share a
common effect size, and accept the alternative, that the true effect is not the same in
all studies.

Then, using formulas (16.6), (16.5), (16.8), and (16.9),

C = 244.215 −
(13802.33

244.215

)
= 187.6978,

T2 = 12.003 − 5
187.698

= 0.0373,

T =
√

0.0373 = 0.1932,
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and
I2 =

(12.003 − 5
12.003

)
× 100% = 58.34%.

To compute the standard error of T2 (from (16.11) to (16.13)), we have sw1 = 244.215,
sw2 = 13,802.33, and sw3 = 1,021,653.52, so that

A =
[

df + 2
(

244 − 13802
244

)
0.0373

+
(

13802 − 2
(1021653

244

)
+ (13802)2

(244)2

)
0.03732

]
= 31.0202.

Then, the variance of T2 is

VT2 = 2 ×
(

31.020

187.6982

)
= 0.0018,

and its standard error is given by

SET2 =
√

0.0018 = 0.0420.

Since Q = 12.003 > 6 = (df + 1), we compute, from (16.14) to (16.19),

B = 0.5 × ln(12.0033) − ln(5)√
2 × 12.0033 −

√
2 × 5 − 1

= 0.2305.

Then compute intermediate values

L = Exp
(

0.5 × ln
(12.003

5

)
− 1.96 × 0.2305

)
= 0.9862

and
U = Exp

(
0.5 × ln

(12.003
5

)
+ 1.96 × 0.2305

)
= 2.4343.

Finally, the 95% confidence intervals for 𝜏2 may be obtained as

LLT2 =
5 × (0.98622 − 1)

187.698
= −0.0007,

which is set to zero, and

ULT2 =
5 × (2.43432 − 1)

187.698
= 0.1312.

The 95% confidence interval for 𝜏 may be obtained by taking the square roots of the
confidence limits for 𝜏2, namely

LLT =
√

0.0 = 0.0,

and
ULT =

√
0.1312 = 0.3622.

Confidence intervals for I2

Since 12.003 > (5 + 1) we compute, using formulas (16.20) through (16.25),

B = 0.5 × ln (12.003) − ln (5)√
2 × 12.003 −

√
2 × 5 − 1

= 0.2305.
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Compute intermediate values

L = exp
(

0.5 × ln
(12.003

5

)
− 1.96 × 0.2305

)
= 0.9862

and
U = exp

(
0.5 × ln

(12.003
5

)
+ 1.96 × 0.2305

)
= 2.4343.

The 95% confidence intervals may then be obtained as

LLI2 =
(

0.98622 − 1

0.98622

)
× 100% = −2.82%,

which is set to zero, and

ULI2 =
(

2.43432 − 1

2.43432

)
× 100% = 83.12.%.

To obtain a 95% prediction interval for the true standardized mean difference in a
future study, we use the random-effects weighted mean and its variance computed in
(14.1) and (14.2), M*= 0.3582 and VM* = 0.0111 and compute, from (17.7) and (17.8),

t0.05
4 = 2.7764,

LLpred = 0.3582 − 2.7764 ×
√

0.0373 + 0.0111 = −0.2525,

and
ULpred = 0.3582 + 2.7764 ×

√
0.0373 + 0.0111 = 0.9690.

This prediction interval is plotted is in Figure 18.1.
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Figure 18.1 Forest plot of Dataset 1 – random-effects weights with prediction interval.
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WORKED EXAMPLE FOR BINARY DATA (PART 2)

On page 85 we showed how to compute the effect size (here, the log odds ratio) and
variance for each study. Here, we proceed from that point.

Using results in Table 18.3, the summary effect is given by

M = −30.594
42.248

= −0.7241,

which value is used in the column labeled Mean in Table 18.4.
Then, using (16.1) we sum the values in the final column of Table 18.4,

Q =
k∑

i=1

Wi(Yi − M)2 = 10.5512.

Or, using (12.3) and results in Table 18.3,

Q = 32.705 − (−30.594)2

42.248
= 10.5512.

Under the assumption that all studies share a common effect, the expected value of Q
is given by

df = 6 − 1 = 5,

Table 18.3 Dataset 2 – Part D (intermediate computations).

Study Effect Variance Weight Calculated quantities

Y VY W WY WY2 W2 W3

Saint –0.366 0.185 5.402 –1.978 0.724 29.18 157.66
Kelly –0.288 0.290 3.453 –0.993 0.286 11.92 41.18
Pilbeam –0.384 0.156 6.427 –2.469 0.948 41.30 265.42
Lane –1.322 0.058 17.155 –22.675 29.971 294.30 5048.71
Wright –0.417 0.282 3.551 –1.480 0.617 12.61 44.76
Day –0.159 0.160 6.260 –0.998 0.159 39.19 245.33

Sum 42.248 –30.594 32.705 428.50 5803.06

Table 18.4 Dataset 2 – Part E (variance computations).

Study Effect Variance Weight Mean Calculated quantities

Y VY W M (Y – M)2 W(Y – M)2

Saint –0.366 0.185 5.402 –0.724 0.128 0.692
Kelly –0.288 0.290 3.453 –0.724 0.191 0.658
Pilbeam –0.384 0.156 6.427 –0.724 0.116 0.743
Lane –1.322 0.058 17.155 –0.724 0.357 6.127
Wright –0.417 0.282 3.551 –0.724 0.094 0.335
Day –0.159 0.160 6.260 –0.724 0.319 1.996

Sum 10.551
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where k is the number of studies. The difference,

10.5512 − 5 = 5.5512

is the excess value which we attribute to differences in the true effect sizes.
The p-value for Q= 10.551 with df= 5, is 0.0610. In Excel, the function=CHIDIST

(10.551,5) returns 0.0610. If we are using 0.10 as the criterion for statistical signifi-
cance, we would reject the null hypothesis that all the studies share a common effect
size, and accept the alternative, that the true effect is not the same in all studies. If
we are using 0.05 as the criterion, we would not have sufficient evidence to reject the
null hypothesis (but would not conclude that the effects are homogeneous, since the
nonsignificant p-value could be due to inadequate statistical power).

Then, using formulas (16.6), (16.5), (16.8), and (16.9),

C = 42.248 −
(428.50

42.248

)
= 32.1052,

T2 = 10.5512 − 5
32.1052

= 0.1729,

T =
√

0.1729 = 0.4158,

and
I2 =

(10.5512 − 5
10.5512

)
× 100 = 52.61%.

To compute the standard error of T2 (from (16.11) to (16.13)), we have sw1 = 42.25,
sw2 = 428.5, and sw3 = 5,803.1, so that

A =
[

df + 2
(

42.25 − 428.5
42.25

)
0.1729

+
(

428.5 − 2
(5803.1

42.25

)
+ (428.5)2

(42.25)2

)
0.17292

]
= 23.7754.

Then, the variance of T2 is

VT2 = 2 ×
(

23.7754

32.10522

)
= 0.0461

and its standard error is given by

SET2 =
√

0.0461 = 0.2148.

Since Q = 10.5512 > 6 5 (df + 1), we compute, from (16.14) to (16.19),

B = 0.5 × ln(10.5512) − ln(5)√
2 × 10.5512 −

√
2 × 5 − 1

= 0.2343.

Then compute intermediate values

L = Exp
(

0.5 × ln
(10.5512

5

)
− 1.96 × 0.2343

)
= 0.9178

and
U = Exp

(
0.5 × ln

(10.5512
5

)
+ 1.96 × 0.2343

)
= 2.2993.
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Finally, the 95% confidence intervals for 𝜏2 may then be obtained as

LLT2 =
5 × (0.91782 − 1)

32.1052
= −0.0246,

which is set to zero, and

ULT2 =
5 × (2.29932 − 1)

32.1052
= 0.6676.

The 95% confidence interval for 𝜏 may be obtained by taking the square roots of the
confidence limits for 𝜏2, namely

LLT =
√

0.0 = 0.0,

and
ULT =

√
0.6676 = 0.8171.

Confidence intervals for I2

Since 10.5512 > (5 + 1) we compute, using formulas (16.20) through (16.25),

B = 0.5 × ln(10.5512) − ln(5)√
2 × 10.5512 −

√
2 × 5 − 1

= 0.2343,

then compute intermediate values

L = Exp
(

0.5 × ln
(10.5512

5

)
− 1.96 × 0.2343

)
= 0.9178

and
U = Exp

(
0.5 × ln

(10.5512
5

)
+ 1.96 × 0.2343

)
= 2.2993.

The 95% confidence intervals may then be obtained as

LLI2 =
(

0.91782 − 1

0.91782

)
× 100% = −18.72%,

which is set to zero, and

ULI2 =
(

2.29932 − 1

2.29932

)
× 100% = 81.09%.

To obtain a 95% prediction interval for the true log odds ratio in a future study, we
use the random-effects weighted mean and its variance computed in (14.3) and (14.4),
M* = –0.5663 and VM* = 0.0570, and compute, from (17.7) and (17.8),

t0.05
4 = 2.7764,

LLpred = −0.5663 − 2.7764 ×
√

0.1729 + 0.0570 = −1.8977,

and
ULpred = −0.5663 + 2.7764 ×

√
0.1729 + 0.0570 = 0.7651.
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Figure 18.2 Forest plot of Dataset 2 – random-effects weights with prediction interval.

These limits are computed on a log scale. We can convert the limits to the odds ratio
scale using

LLpred = exp(−1.8977) = 0.1499

and
ULpred = exp(0.7651) = 2.1492.

This prediction interval is plotted in Figure 18.2.

WORKED EXAMPLE FOR CORRELATIONAL DATA (PART 2)

On page 90 we showed how to compute the effect size (here, the Fisher’s z transfor-
mation of the correlation coefficient) and variance for each study. Here, we proceed
from that point.

Using results in Table 18.5, the summary effect is given by

M = 242.650
647.000

= 0.3750,

which value is used in the column labeled Mean in Table 18.6.
Then, using (16.1) we sum the values in the final column of Table 18.6,

Q =
k∑

i=1

Wi(Yi − M)2 = 36.1437.

Or, using (12.3) and results in Table 18.5,

Q = 127.147 − (242.650)2

647.000
= 36.1437.
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Table 18.5 Dataset 3 – Part D (intermediate computations).

Study Effect Variance Weight Calculated quantities

Y VY W WY WY2 W2 W3

Fonda 0.549 0.027 37.000 20.324 11.164 1369.00 50653.00
Newman 0.693 0.011 87.000 60.304 41.799 7569.00 658503.00
Grant 0.424 0.045 22.000 9.320 3.949 484.00 10648.00
Granger 0.203 0.003 397.000 80.485 16.317 157609.00 62570773.00
Milland 0.867 0.018 57.000 49.436 42.876 3249.00 185193.00
Finch 0.485 0.021 47.000 22.781 11.042 2209.00 103823.00

Sum 647.000 242.650 127.147 172489.00 63579593.00

Table 18.6 Dataset 3 – Part E (variance computations).

Study Effect Variance Weight Mean Calculated quantities

Y VY W M (Y – M)2 W(Y – M)2

Fonda 0.549 0.027 37.000 0.375 0.030 1.124
Newman 0.693 0.011 87.000 0.375 0.101 8.804
Grant 0.424 0.045 22.000 0.375 0.002 0.052
Granger 0.203 0.003 397.000 0.375 0.030 11.787
Milland 0.867 0.018 57.000 0.375 0.242 13.812
Finch 0.485 0.021 47.000 0.375 0.012 0.565

Sum 36.144

Under the assumption that all studies share a common effect, the expected value of Q
is given by

df = 6 − 1 = 5,

where k is the number of studies. The difference,

36.1437 − 5 = 31.1437,

is the excess value which we attribute to differences in the true effect sizes.
The p-value for Q = 36.1437 with df = 5, is less than 0.0001. In Excel, the function

=CHIDIST(36.1437,5) returns < 0.0001. If we are using 0.10 or 0.05 as the criterion
for statistical significance, we would reject the null hypothesis that all the studies share
a common effect size, and accept the alternative, that the true effect is not the same in
all studies.

Then, using formulas (16.6), (16.5), (16.8), and (16.9),

C = 647.000 −
(172489.00

647.000

)
= 380.4019,

T2 = 36.1437 − 5
380.4019

= 0.0819,

T =
√

0.0819 = 0.28613,
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and
I2 =

(36.1437 − 5
36.1437

)
× 100 = 86.17%.

To compute the standard error of T2 (from (16.11) to (16.13)), we have sw1 = 647.00,
sw2 = 172489.00, and sw3 = 63,579,593.00, so that

A =
[

df + 2
(

647.00 − 172489
647.00

)
0.0819

+
(

172489 − 2
(63579593

647.00

)
+ (172489)2

(647.00)2

)
0.08192

]
= 382.4983.

Then, the variance of T2 is

VT2 = 2 ×
(

382.4983

380.40192

)
= 0.0053,

and its standard error is given by

SET2 =
√

0.0053 = 0.0727.

Since Q = 36.1437 > 6 = (df + 1), we compute, from (16.14) to (16.19),

B = 0.5 × ln(36.1437) − ln(5)√
2 × 36.1437 −

√
2 × 5 − 1

= 0.1798.

Then compute intermediate values

L = Exp
(

0.5 × ln
(36.1437

5

)
− 1.96 × 0.1798

)
= 1.8903

and
U = Exp

(
0.5 × ln

(36.1437
5

)
+ 1.96 × 0.1798

)
= 3.8242.

Finally, the 95% confidence intervals for 𝜏2 may then be obtained as

LLT2 =
5 × (1.8902 − 1)

380.4019
= 0.0338

and

ULT2 =
5 × (3.82422 − 1)

380.4019
= 0.1791.

The 95% confidence interval for 𝜏 may be obtained by taking the square roots of the
confidence limits for 𝜏2, namely

LLT =
√

0.0338 = 0.1839,

and
ULT =

√
0.1791 = 0.4232.

Confidence intervals for I2

Since Q = 36.1437 > 6 = (df + 1), we compute, from (16.20),

B = 0.5 × ln(36.1437) − ln(5)√
2 × 36.1437 −

√
2 × 5 − 1

= 0.1798,

then compute intermediate values

L = Exp
(

0.5 × ln
(36.1437

5

)
− 1.96 × 0.1798

)
= 1.8903



�

� �

�

Chapter 18: Worked Examples (Part 2) 137

and
U = Exp

(
0.5 × ln

(36.1437
5

)
+ 1.96 × 0.1798

)
= 3.8242.

The 95% confidence intervals may then be obtained as

LLI2 =
(

1.89032 − 1

1.89032

)
× 100% = 72.01%,

and

ULI2 =
(

3.82412 − 1

3.82412

)
× 100% = 93.16%.

To obtain a 95% prediction interval for the true Fisher’s z in a future study, we use
the random-effects weighted mean and its variance computed in (14.5) and (14.6),
M* = 0.5328 and VM* = 0.0168 and compute, from (17.7) and (17.8),

t0.05
4 = 2.7764,

LLpred = 0.5328 − 2.7764 ×
√

0.0819 + 0.0168 = −0.3396,

and
ULpred = 0.5328 + 2.7764 ×

√
0.0819 + 0.0168 = 1.4051.

These limits are in the Fisher’s z metric. We can convert the limits to the correlation
scale using

LLpred = e(2×−0.3396) − 1
e(2×−0.3396) + 1

= −0.3271

and

ULpred = e(2×1.4051) − 1
e(2×1.4051)+1

= 0.8865.

This prediction interval is plotted in Figure 18.3.
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Figure 18.3 Forest plot of Dataset 3 – random-effects weights with prediction interval.
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SUMMARY POINTS

• This chapter includes worked examples showing how to compute the summary
effect using fixed-effect and random-effects models.

• For the standardized mean difference we work with the effect sizes directly.
• For ratios we work with the log transformed data.
• For correlations we work with the Fisher’s z transformed data.
• These worked examples are available as Excel files on the book’s website (www

.Introduction-to-Meta-Analysis.com).


